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Abstract

Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management significantly con-
tribute to high global warming potential (GWP). However, most studies have failed to facilitate identifying 
MSW management schemes capable of comprehensively meeting the goals from decision-makers at dif-
ferent hierarchical levels under uncertainties. This study develops an inexact bi-level linear programming 
(IBLP) model for collaborative control of GHG emissions and waste management in Beijing: MGU-MCL. 
The MGU-MCL model implies a leader-follower decision process, with the environmental sector providing 
the upper-level objective and the local authority dominating the lower-level objective. Then, an interactive 
fuzzy possiblistic approach is introduced to represent the satisfactory degrees of different decision-making 
levels. Results show that the MGU-MCL model decisions would reduce GHG emissions by about 9%, but 
increase management costs by 4% compared with the decisions from conventional models; the contribution 
of the landfill facilities to GHG emissions would be predominant, especially methane emissions; while the 
composting and incineration facilities would account for a large proportion of management cost. Further 
comparative analysis among the bi-level and single-level models indicates that the bi-level model could 
provide coordinated schemes under an integrated consideration of economic efficiency and environmental 
impact.
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Introduction

Greenhouse gas (GHG) emissions mitigation, waste 
resource utilization, and economic cost optimization are 
placed at the forefront of municipal solid waste (MSW) 
management [1-4]. In the MSW management system, 
GHGs are emitted during all disposal processes, including 
carbon dioxide (CO2), nitrous oxide (N2O), and methane 
(CH4) from collection, transportation, and operation 
processes, which are believed to be the primary reason 
for global warming potential (GWP) [5-7]. For example, 
CH4 emissions from landfill facilities have contributed 
approximately 3-4% to annual global anthropogenic GHG 
emissions; N2O emissions associated with incineration 
ranged between 11 and 293 g of N2O/tons of waste, which 
were estimated to be 298 times more effective than CO2 
for their GWP [8]. In Canada, about 25 million tons CO2 
equivalent (CO2-eq) emissions were produced from the 
MSW department in 2001, of which landfill facilities 
accounted for approximately 92% [9]; in the United 
States, waste-related activities shared about 2.3% of total 
GHG emissions in 2008 [10]. 

China has surpassed the United States as the world’s 
largest GHG emitter since 2010, accounting for about 
32% of total GHG emissions in 2013 [11]. In response 
to the challenges of climate mitigation and sustainable 
development, China has viewed intensifying MSW 
management as a priority area of GHG emissions control 
through publishing “China’s National Climate Change 
Program” in 2007 [12]. Accordingly, it is increasingly 
imperative for decision-makers to explore a sound strategy 
for collaborative control of GHG emissions and waste 
management.

Previously, numerous efforts have been taken 
to explore the inherent relationships between GHG 
emissions and waste management [13-15]. Based on the 
Gabi software package, Chang et al. [16] integrated GWP 
and cost-benefit criteria to identify an optimal strategy 
of a typical MSW system. Findings indicated that the 
traditional cost-benefit analysis without GWP concerns 
could hardly compete with the scheme with GWP 
concerns. Zhao et al. [17] employed eco-efficiency (E/E), 
life cycle assessment (LCA), and life cycle costing (LCC) 
to analyze an MSW management system in terms of GHG 
emission mitigation. Results showed no linear relationship 
between global warming impact and the cost impact in the 
MSW management system.

However, various complexities and uncertainties 
attributed to spatial and temporal variations may exist 
in a general MSW management system, which not 
only place them beyond the conventional deterministic 
optimization approaches, but also strengthen the conflict-
laden MSW allocation between competing environmental 
and municipal interests. To counteract these concerns, it 
is crucial to allocate WSW under uncertainties through 
applying mathematical techniques. Lu et al. [18] 
introduced a single-objective programming model for 
developing MSW management strategy under uncertainty. 
Findings indicated that the model with GHG concerns 

was more beneficial to the environment, with over 5.5 
million tons of total equivalent contribution (TEC) being 
reduced over the 15-year planning horizon. Additionally, 
the environmental effects can be transferred from the 
constraints to an objective function, resulting in the 
generation of a multi-objective programming problem. 
An inexact multi-objective dynamic model for MSW 
management was proposed by Su et al. [19], wherein the 
environmental effects and waste management cost were 
considered as the major objectives. A multi-objective 
programming model was also developed for supporting 
waste management with consideration of GHG emissions 
mitigation under uncertainty [20].

Despite the above-mentioned efforts, tradeoffs between 
management cost and GHG emissions are usually needed 
because the corresponding decision-makers represent 
different concerns. Questions could hardly be answered 
without considering the tradeoffs:
1. How to satisfy the goals of both saving costs and 

reducing GHG emissions in a sequential manner?
2. How to conduct optimal MSW management strategies 

to achieve utilization of waste resources?
3. What are the best sizing and timing for facility 

expansion? 
In practical terms, neither single-objective nor multi-

objective approaches can address the above issues 
effectively. Because the two approaches must be satisfied 
simultaneously, a leader-follower relationship must be 
maintained. However, the bi-level linear programming 
(BLP) method provides a potential technique to solve this 
type of problem. Unlike the conventional multi-objective 
methods, the BLP method can make a non-compromised 
decision among different levels, which can address 
problems wherein two decision makers are at different 
hierarchical levels – the leader and the follower – with 
each one not controlling part of the variables but having 
its objective function and constrains [21]. 

In the BLP decision-making processes, the follower 
must follow the leader, which in turn must attempt to 
meet the follower in an incentive or disincentive manner 
for their targets to be optimized synchronously [22]. 
Currently, the BLP method has been applied for the 
leader-follower problems [23-24]. For instance, He et al. 
[25] advanced a mixed integer bi-level decision-making 
method with features like two decision makers at different 
levels. A bi-level stochastic optimization approach was 
also developed by Kalashnikov et al. [26] for coping with 
a natural gas cash-out problem wherein a leader-follower 
system existed. 

Therefore, this study aims to develop an inexact bi-level 
linear programming model (named as MGU-MCL model) 
in support of collaborative control of GHG emissions 
and waste management for the city of Beijing, China. 
This model is formulated by integrating inexact linear 
programing (ILP) [27] and bi-level linear programming 
into a general framework. Moreover, solutions obtained 
from the MGU-MCL model and the conventional single-
level programming, namely the minimization of GHG 
emissions (MGS) and the minimization of management 
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cost (MCS) are compared to analyze the changes in 
decision-making processes from the perspectives of 
economic, environmental, and system management 
efficiency.

Materials and Methods

Overview of the Study System

Beijing was selected as our case study to illustrate 
the performance of the approach. The city has an area of 
16,410.54 km2. It has a population of approximately 21.14 
million, generating more than 18,400 tons of residential 
waste per day. Four MSW process units, namely transfer 
station, landfill, composting, and incineration facilities 
are applied in Beijing. The planning MSW allocation 
scheme in Beijing is illustrated in Fig. 1. Specifically, 
29 MSW treatment facilities are centered, of which six 
are for transfer stations, 13 for landfill facilities, five for 
composting, and five for incineration facilities. The most 
waste that flows from urban districts would be collected 
and shipped to transfer stations for pretreatment, then 
allocated to the terminal processing facilities. Because of 
the lack of a large-scale transit system, the waste flows 
generated in the suburban areas would be directly sent to 
the terminal processing facilities, primarily for composting 
and landfilling. 

According to the three-year implementation plan 
for construction of municipal solid waste treatment and 
disposal facilities for Beijing, the total percentage of 
incineration and biological treatment will run up to 70% 
before 2015 and that of landfill will decrease to 30% 
[11]. Data from this document would be seen as the input 
data for the MGU-MCL model formulation. Besides, a 
previous study showed that CO2-eq emissions associated 
with MSW management activities in Beijing have been 
increasing since 2010, and are expected to peak at  
54,367 m3/h around 2026 [11].

Data Collection and Analysis

The planning span (from 2016 to 2030) was partitioned 
into three periods, with each one representing five years. 
Field investigation and data collection from related reports 
were the primary sources for determining model parameters 
[28-29]. The investments of MSW management comprised 
the costs for collection, transportation, operation, air 
control, and power generation (Table 1). Revenues 
from transfer stations and composting and incineration 
facilities could compensate for the huge operational 
costs. Revenues from a composting facility are assessed 
through biogas power generation and fertilizer sales. Also, 
power generation and government subsidies are sources 
of incineration facility revenues. Table 2 presents the 
average revenues throughout the planning horizon. Since 

Fig. 1. MSW management system planning in Beijing.
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Table 1. Information about disposal, power generation, and air control.

Data Period 1 Period 2 Period 3

Transfer station operation cost ($/ton)

(t = 1)  Yamenkou transfer station [36.45, 37.10] [38.74, 39.86] [40.10, 42.12]

(t = 2)  Wuluju transfer station [34.13, 35.64] [36.13, 38.10] [38.14, 39.45]

(t = 3)  Majialou transfer station [33.11, 33.86] [34.85, 36.48] [37.25, 38.45]

(t = 4)  Xiaowuji transfer station [33.42, 34.23] [35.46, 36.65] [37.05, 39.31]

(t = 5)  Datun transfer station [32.82, 34.16] [34.21, 36.12] [36.13, 38.15]

(t = 6)  Liyuan transfer station [35.64, 38.16] [37.95, 40.26] [40.35, 42.40]

Landfill operation cost ($/ton)

(l = 1)  Liulitun landfill [6.13, 7.32] [7.52, 8.13] [9.20, 9.64]

(l = 2)  Gaoantun landfill [5.49, 6.40] [6.43, 8.58] [8.62, 9.10]

(l = 3)  Xitianyang landfill [5.86, 7.12] [7.15, 8.85] [9.00, 9.62]

(l = 4)  Beishengshu landfill [6.00, 7.20] [7.34, 8.62] [8.66, 10.12]

(l = 5)  Anding landfill [7.26, 8.64] [8.85, 9.23] [9.60, 10.53]

(l = 6)  Beitiantang landfill [7.36, 8.16] [8.24, 8.49] [8.88, 9.56]

(l = 7)  Dongnanzhao landfill [5.59, 6.41] [6.53, 8.58] [8.72, 9.12]

(l = 8)  Banbidian landfill [7.88, 8.53] [8.63, 9.40] [9.60, 10.15]

(l = 9)  Binyang landfill [7.85 8.22] [8.34, 9.02] [9.20, 9.68]

(l = 10)  Qianruiying landfill [7.92, 8.53] [8.63, 9.60] [9.80, 10.20]

(l = 11)  Asuwei landfill [7.96, 8.36] [8.44, 9.23] [8.87, 9.76]

(l = 12)  Yanqing landfill [7.63, 8.56] [8.86, 9.42] [9.72, 10.13]

(l = 13)  Jiaojiapo landfill [7.86, 8.16] [8.24, 9.03] [8.67, 9.56]

Composting operation cost ($/ton)

(c = 1)  Huairou composting [20.50, 21.60] [18.50, 19.50] [16.00, 17.00]

(c = 2)  Shunyi composting [20.75, 21.00] [18.75, 19.00] [16.75, 17.00]

(c = 3)  Dongcun composting [19.60, 20.60] [18.45, 19.50] [16.30, 18.00]

(c = 4)  Nangong composting [20.50, 21.50] [18.50, 19.50] [16.00, 17.00]

(c = 5)  Asuwei composting [20.00, 21.00] [18.50, 19.50] [16.50, 17.50]

Incinerator operation cost ($/ton)

(i = 1)  Gaoantun incinerator [24.00, 25.00] [23.50, 24.50] [21.00, 22.00]

(i = 2)  Nangong incinerator [23.50, 24.50] [22.50, 23.50] [21.50, 22.50]

(i = 3)  Lujiashan incinerator [24.50, 25.50] [23.50, 25.00] [22.50, 23.00]

(i = 4)  Asuwei incinerator [22.30, 23.00] [21.50, 22.50] [21.00, 22.00]

(i = 5)  Haidian incinerator [23.80, 24.50] [23.00, 24.00] [22.50, 23.00]

Biogas power generation ($/kW·h) [0.03, 0.06] [0.03, 0.06] [0.03, 0.06]

Incineration power generation ($/kW·h) [0.15, 0.20] [0.15, 0.20] [0.15, 0.20]

Composting air control ($/kW·h) [0.52, 0.63] [0.52, 0.63] [0.52, 0.63]

Incineration air control ($/kW·h) [0.30, 0.35] [0.30, 0.35] [0.30, 0.35]
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the capability of existing facilities can hardly satisfy the 
increasing waste-disposal demands, system expansions are 
allowed (Table 3). The potential value of GHG emissions 
and the environmental standard levels for discharging 
GHGs to the atmosphere are presented in Table 4.

Modeling Formulation

Upper-level objective: The upper-level objective 
function for the MGU-MCL model is applied to minimize 
the GHG emissions as required by the environmental 
sector of the city. The objective function can be expressed 
as carbon equivalent emissions from each of the separate 
processes.

Table 2. Revenues for waste flows.

Facility source Period 1 Period 2 Period 3

Transfer station Recycle ($/ton) [6.8, 7.5] [7.0, 7.6] [7.1, 7.7]

Composting facility

Recycle ($/ton) [4.2, 4.6] [4.3, 4.7] [4.3, 4.8]

Power generation ($/kW·h) [0.20, 0.22] [0.20, 0.22] [0.20, 0.22]

Fertilizer sale ($/ton) [10.5, 12.5] [10.5, 12.5] [10.5, 12.5]

Incineration facility

Recycle ($/ton) [6.5, 7.2] [6.6, 7.2] [6.8, 7.5]

Power generation ($/kW·h) [0.20, 0.22] [0.20, 0.22] [0.20, 0.22]

Subsidies ($/ton) [30.0, 33.0] [30.0, 33.0] [30.0, 33.0]

Facility expansion options (ton/day)
Capital cost for expansion ($106)

Period 1 Period 2 Period 3

Transfer 
station

Option 1 (e = 1): 300 [0.04, 0.05] [0.03, 0.04] [0.03, 0.04]

Option 2 (e = 2): 400 [0.06, 0.07] [0.05, 0.06] [0.05, 0.06]

Option 3 (e = 3): 500 [0.08, 0.09] [0.07, 0.08] [0.06, 0.07]

Composting facility

Option 1 (m = 1): 300 [0.40, 0.45] [0.35, 0.40] [0.30, 0.35]

Option 2 (m = 2): 500 [0.60, 0.65] [0.55, 0.58] [0.45, 0.50]

Option 3 (m = 3): 700 [0.80, 0.90] [0.75, 0.78] [0.65, 0.70]

Incineration
facility

Option 1 (n = 1): 400 [1.20, 1.45] [1.10, 1.35] [1.00, 1.25]

Option 2 (n = 2): 600 [1.80, 1.95] [1.70, 1.85] [1.60, 1.75]

Option 3 (n = 3): 800 [2.40, 2.55] [2.30, 2.45] [2.20, 2.35]

Table 3. Economic data of facility expansions.

Table 4. Potential value of GHG emissions and environmental standard levels.

Date period 1 period 2 period 3

Process unit GHG emissions (kg CO2-eq/ton waste)

Transportation [9.3, 9.9] [7.4, 7.8] [6.0, 6.5]

Transfer station [34, 40] [30, 38] [28, 35]

Landfill [200, 220] [180, 200] [150, 165]

Composting [15, 20] [15, 18] [13, 15]

Incineration [50, 60] [35, 40] [30, 35]

Total mass value (ton/day)

CO2 60 56 50

CH4 5 4.6 4.3

N2O 0.55 0.51 0.45
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  (1)

Upper-level constraints: 
1)  Binary constraints: The facility-expansion can only 

be considered once in each time period, and binary 
decision variables (i.e., 0 or 1) are used to denote 
whether a facility should be expanded or not.

 

                        (2a)

                     (2b)

                      (2c)

2)  GHG-emission constrains: The total GHG emissions 
from each process unit should satisfy respective 
environmental standards.

(3a)

(3b)

  (3c)

Lower-level objective: the lower-level objective 
function is the economic target for the MSW management 
system. The economic objective function contains the 
investment costs (transportation, operation, and generation 
costs) and the profits from recycling, electricity sales, 
fertilizer sales, and government subsidies. The model can 
be formulated as follows:

            (4a)

of which:

(4b)

(4c)

Lower-level Constraints

1)  Capacity constraints: The waste inflows to each process 
unit must be less than or equal to the maximum design 
capacity and more than or equal to the minimum 
amount of processing.

         (5a)

(5b)

(5c)

(5d)

2)  Mass balance constraints: The constraints claim that 
the total generated waste flows must be less than or 
equal to the sum of handling amount in the process 
units. And the waste flows from the transfer station 
must be equal to the sums of those treated in landfill, 
composting, and incineration facilities.

                (6a)
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   (6b)

    (6c)

3)  Residue constraints: Residue constraints are needed 
for composting and incineration facilities. The residue 
from the facilities must be moved to landfill facilities. 
According to a particular planning route (Fig. 1), some 
equations could easily be obtained. For example, the 
residue from Asuwei composting facility needs to be 
sent to Asuwei landfill facility for disposal, and the 
residue generated in Lujiashan incineration facility 
should be disposed of by Jiaojiapo and Beitiantang 
landfill facilities, while the composting facilities in 
suburban areas are not taken into consideration due to 
their geographical disadvantages. 

(7a)

   (7b)

4)  Constrains of transfer station disposal demand: Waste 
flows to the transfer stations should be larger than 
80% of those generated in the urban districts, and each 
transfer station has its respective scope of services. 
For example, the major scope of Datun transfer station 
covers (partial or 30%) Dongcheng, Xicheng, and 
Chaoyang districts.

     (8)

5)  Constraints of diversion rate control: As suggested 
by government documents, at least 30% and 40% of 
the waste should be shipped to the composting and 
incineration facilities, respectively. And not more than 
30% of the waste should be sent to landfill facilities.

       (9a)

       (9b)

(9c)

6)  Nonnegative constraints: The decision variables 
should be larger than or equal to zero.

(10)

Detailed nomenclature for indexes, parameters, and 
variables are presented in the appendix. 

Modeling Solution

According to the fuzzy possibilistic approach and the 
interactive solution algorithm [30-33], the model can be 
solved as follows: 

First, the upper-level objective (i.e., Eq. 1) solves 
its problem independently, regardless of lower-level 
objectives (i.e., Eqs. 4a, 4b, 4c). An interactive solution 
algorithm is given to address the above issue. In detail, 
the upper-level objective must be transformed into 
two deterministic interactive sub-models. Then the 
lower- and upper-bound GHG emissions (assumed as  
[TGWP-

ideal, TGWP+
ideal]) can be combined, respectively. 

And the lower- and upper-bound solutions of daily waste 
flows can also be generated, namely [X-

upper, X
+

upper]. 
Similarly, the lower-level objective must solve its 

problem independently, regardless of the upper-level 
model. The lower- and upper-bound management costs 
can be generated (assumed to be [TCOST-

ideal, TCOST+
ideal]), 

respectively. And the lower- and upper-bound solutions 
of daily waste flows, namely [X-

lower, X
+

lower], can also be 
obtained from the lower-level model. If [X-

upper, X
+

upper] = 
[X-

lower, X
+

lower], an optimal solution is achieved. However, 
their solutions differ because of the dissimilarity between 
the objectives of the two levels.

Second, the upper-level objective must reassess its 
tolerances by assuming that the value of TGWP-(TGWP+) 
must be around TGWP-

ideal(TGWP+
ideal). In other words, 

the most desirable decision is at TGWP-
ideal(TGWP+

ideal) 
and the most undesirable decision at the boundary of 
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the interval. The boundary is named as TGWP-
bound and 

TGWP+
bound. Decisions outside the lower- or upper-bound 

intervals are unacceptable.
Third, it must explore the accurate values of the 

TGWP-
bound and TGWP+

bound. The above-mentioned [X-
upper, 

X+
upper] and [X-

lower, X
+

lower] are obtained from solving the 
two single-level models, respectively. Given that the 
upper-level objective and the lower-level objective are the 
exact opposite, the solutions from the lower-level model 
can then be regarded as the boundary of the upper-level 
objective. So, TGWP-

bound can be generated by introducing 
X-

lower to the upper-level objective function and the 
corresponding TGWP+

bound can be generated in the same 
way. Four accurate values can be given through the above 
steps, namely TGWP-

ideal, TGWP+
ideal, TGWP-

bound, and 
TGWP+

bound.
Fourth, it is to regroup the intervals and the results 

can be shown as [TGWP-
ideal, TGWP-

bound] and [TGWP+
ideal, 

TGWP+
bound]. Then the completed set of bounds can be 

seen as the input parameters in the formulation of the final 
upper-level membership function.

Fifth, the triangular membership functions of the 
upper-level objective can be formulated as follows:

         (11)

…where α-
upper and α+

upper are the lower- and upper-bound 
satisfactory degrees of upper-level objective, respectively.

Sixth, similar to the solution procedures of the upper-
level objective, the lower-level objective also reassesses 
its tolerances. The lowest tolerable targets for the lower-
level objective are named as TCOST-

bound and TCOST+
bound, 

which are calculated by introducing the upper-level 
solutions (i.e., [X-

upper, X
+

upper]) to the lower-level objective 
function. Then to regroup the intervals and the results can 
be shown as [TCOST-

ideal, TCOST-
bound] and [TCOST+

ideal, 
TCOST+

bound], which are also used as the input parameters 
in the formulation of the final lower-level membership 
function. Thus, the membership function for the goals of 
the lower-level objective can be stated as:

     (12)

…where β-
lower and β+

lower are the lower- and upper-bound 
satisfactory degrees of lower-level objective, respectively.

Seventh, to satisfy all satisfactory degrees that are 
usually in conflict with one another, α-

upper(α
+

upper) and 

β-
lower(β

+
lower) must be maximized simultaneously, giving 

rise to a multi-objective programming problem:

                  (13)

The fuzzy possibilistic approach is one of the most 
attractive and practical tools for solving the multi-
objective problem. To simplify the problem, the concept 
of intersection is used, wherein λ± is defined as [34]:

                 (14)

… where 

Then the above problem becomes:

                             (15)

Finally, the model becomes:

       (16)

Through the interactive solution algorithm, the optimal 
solutions for the MGU-MCL model can be generated, as 
follows:

        (17)

… where (α-
upper)opt and (α+

upper)opt are the optimized lower- 
and upper-bound satisfactory degrees of the upper-level 
objective, respectively; (β-

lower)opt and (β+
lower)opt are the 

optimized lower- and upper-bound satisfactory degrees 
of the lower-level objective, respectively; TGWP-

opt and 
TGWP+

opt are the optimized lower- and upper-bound GHG 
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emissions, respectively; TCOST-
opt and TCOST+

opt are the 
optimized lower- and upper-bound management costs, 
respectively; X-

opt and X+
opt represent the optimized lower- 

and upper-bound daily waste flow-allocation schemes, 
respectively; Y-

opt and Y+
opt stand for the optimized 

lower- and upper-bound capacity-expansion schemes, 
respectively.

Results Analysis

Results from MGU-MCL Model

1) Satisfactory degree analysis. The MGU-MCL model 
is solved to obtain the maximum satisfactory degree 
(λ±

opt) under uncertainties. The λ levels range from 0 
to 1. The λ levels near 1 suggest that the solution has 
a higher possibility to satisfy the objective function 
value and constraints under more favorable system 
situations; in contrast, the λ levels closer to 0 indicate 
that the objective function value and constraints with 
a lower possibility can be met [35]. Under the lower-
bound membership function, the economic cost would 
amount to $57.3×108 and the resulting GHG emissions 
would reach 0.837×107 tons CO2-eq, with λ-

opt = 0.50. 
Conversely, on the upper-bound membership function 
side, its economic cost and GHG emissions would 
respectively run up to $85.5×108 and 0.946×107 tons 
CO2-eq, with λ+

opt = 0.57. Generally, solutions of the 
objective functions respectively offer two extremes of 
GHG emissions and economic cost over the 15-year 
span. As the actual values vary within their lower- and 
upper-bound extremes, correspondingly, the expected 
GHG emissions and economic costs would change 
with varied satisfactory degrees [36].

2) Planning MSW management and GHG emissions: 
The total quantity of MSW generation in Beijing 
is presented in Fig. 2. It would respectively reach 
[34.33, 35.70] ×106, [35.96, 36.33] ×106, and [36.67, 
38.02] ×106 tons in periods 1, 2, and 3, with a high 
level of diversion rate. Take period 1 for an example, 
where [8.97, 9.78] ×106 tons waste steams (involving 
residues) would be allocated to the landfill facilities, 
whereas 12.31×106 and [13.72, 14.28] ×106 tons waste 
flows would be treated by composting and incineration 
facilities, respectively.
The concept of carbon equivalent emissions is 

introduced in this case to identify GWP impacts of CO2, 
CH4, and N2O. There would be [34.36, 37.00] ×105 tons 
CO2-eq of CO2, [36.71, 38.02] ×105 tons CO2-eq of CH4, 
and [26.96, 27.90] ×105 tons CO2-eq of N2O emissions 
from waste-related processes throughout the planning 
horizon (Table 5). Even with strict control over landfilling, 
the proportion of CH4 emissions would also be the largest, 
which would be responsible for 37.4%, 35.1%, and 39.6% 
of total GHG emissions by periods 1, 2, and 3, respectively. 
In terms of the CO2 emissions, landfill and incineration 
facilities would be the most significant sources for 
contributing this emission, particularly the former ones, 
having shares of 60.4%, 61.0%, and 60.5% of total CO2 
emissions in periods 1, 2, and 3, respectively. Apart 
from CH4 and CO2, the effects of N2O from incineration 
facilities could hardly be neglected. The average GWP 
impact share of N2O would respectively be 26.4%, 29.3%, 
and 27.0% in periods 1, 2, and 3. Temporally, period 2 
has the lowest GHG emissions compared with periods 1 
([33.64, 35.85] ×105 tons CO2-eq) and 3 ([34.16, 35.71] 
×105 tons CO2-eq), which would be attributed to that only 
[20.55, 21.14]% of the total waste flows are treated by 
landfilling during period 2.

Fig. 2. Total waste flows consumed by the MSW processes units (Unit: million tons).
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3)  Scenarios and sensitivity analysis. Diversion rate and 
GWP impact value were estimated in terms of local 
MSW management policies and the composition 
of the MSW. Nevertheless, uncertainties may be a 
critical issue with respect to practical application of 
the developed MGU-MCL model. Thus, scenarios and 
sensitivity analysis are needed to identify variations of 
model solutions to different input factors (i.e., GL, GC, 
GI, and GWP in the model). In this study diversion rates 
of 0.70, 0.55, and 0.45 are selected for scenarios 1, 2, 
and 3, respectively. Each of the scenarios is designed 
to be associated with variation of GWP impact values 
changed by -20% to 20%.
Figs 3 and 4 respectively present the impacts of GL, 

GC, GI, and GWP of the city’s MSW toward the GHG 
emissions and economic cost, where only the lower-

bound situation is taken into consideration. In terms of 
Fig. 3, the diversion rate and GWP impact value would 
have a significant impact on system GHG emissions, 
which would increase with GWP impact value, whereas 
they decline with diversion rate. The results reveal that 
when the diversion rate increases 1%, the GHG emissions 
could approximately be reduce with 0.003×104 tons CO2-
eq. Conversely, each decrease of 1% GWP impact value 
would lead to a reduction of 0.008×104 tons CO2-eq of 
GHG emissions. Fig. 4 shows that the total economic cost 
is not sensitive to the variation of GWP impact value, as 
any chance of GWP impact value could not lead to a minor 
variation in the total economic cost. However, reducing the 
diversion rate would play a positive role in economic cost, 
showing that each reduction of 1% diversion rate would 
be attributed to a reduction of $0.006×108 of economic 
cost. In general, scenarios and sensitivity analysis results 
indicate that the uncertainties over diversion rate and 
GWP impact value would have significant impacts on 
MSW management policies.

Comparisons with MGS and MCS Models

Multiple difficulties exist in comparing the modeling 
values to practical ones since the decision is made within 
a 15-year span [25]. Thus, two single-level models are 
applied for comparing the modeling values obtained from 
the bi-level model to those obtained through the single-
level models.
1)  Waste diversion analysis. The waste-flow allocation 

schemes are shown in Fig. 5. For the MGS scheme, 
the diversion rate is expected to be 78%, of which 
composting facilities are responsible for 38%, which 
significantly exceeds their preset diversion rate (i.e., 
30%). Oppositely, the existing landfill facilites would 
dispose of only 22% of the generated waste flows due to 
their high GHG emissions. The waste-flow allocation 
scheme, in terms of MCS model, shows that about 29% 
of the total waste would be treated in landfill facilities, 
which basically achieves their maximum requirement. 
The above comparative analysis suggests that if GHG 
emissions were not considered, landfill facility would 
be used on a large scale because of its competive 
operation cost. Additionally, the two single-level 
models have the least diversified targets that narrowly 
focus on either environmental benefit or economic 
cost. As a result, their schemes are characterized as 
either economically aggressive or environmentally 

Period 1 period 2 period 3

GHG System GWP GHG System GWP GHG System GWP 

CO2 [12.16, 13.28] CO2 [10.77, 11.45] CO2 [11.43, 12.27]

CH4 [12.59, 13.52] CH4 [10.60, 10.68] CH4 [13.52, 13.82]

N2O [8.89, 9.05] N2O [8.86, 9.23] N2O [9.21, 9.62]

Table 5. Solutions of the MGU-MCL for GHG emissions (unit: 105 tons CO2-eq).

Fig. 3. Variation of GHG emissions versus variation of GWP 
impact value under different scenarios (Unit: 105 ton CO2-eq).

Fig. 4. Variation of economic cost versus variation of GWP 
impact value under different scenarios (Unit: $108).
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aggressive. However, by emphasizing both 
environmental benefit and economic cost, the MGU-
MCL solutions would provide a more comprehensive 
waste diversion scheme. Consequently, the facilities 
that have low GHG emissions and low economic cost 
would attach more significance.

(2) Facility expansion analysis. The facility-expansion 
schemes are exhibited in Fig. 6. Given the adjustment 
of MSW management policy in Beijing, landfill 
facilities would not be expanded during the entire 

planning horizon. The transfer stations would dispose 
of a greater amount of waste flows as the growing 
waste generation in urban districts. The corresponding 
expansion for transfer stations would be conducted in 
terms of the three models (MGS, MCS, and MGU-
MCL), with the additional daily capacities of 2,400, 
2,300, and 1,500 tons at the end of period 3 through the 
three models, respectively. Expansion for composting 
facilities would also be required in periods 1, 2, and 
3, attributed to their economic and environmental 

Fig. 5. Waste-flow comparisons among three models (Unit: tons/day).
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advantages. Take the MGU-MCL model as an example, 
the capacity-expansion of Shunyi and Dongcun 
composting facilities must be conducted in period 1, 
that of Nangong in periods 1 and 3, and that of Huairou 
and Awuwei in periods 1 and 2. Eventually, these 
composting facilities’ daily capacities would grow to 
900, 1,350, 2,500, 1,600, and 2,600 tons, respectively. 
The expansion capacities of the incineration facilities 
would achieve 2,000 and 1,400 tons at the end of 
period 3 based on the MGS and MGU-MCL models, 
respectively, yet it would be only 600 tons in terms 
of the MCS model. This means that the majority of 
the waste would be shipped to incineration facilities 
to improve the diversion rate so as to mitigate GHG 
emissions.

(3)  Environmental effects analysis. Findings show that 
the MCS scheme would contribute to the lowest GHG 
emissons reduction, running up to [0.910, 1.020] 
×107 tons CO2-eq throughout the 15-year planning 
span. Conversely, the MGS scheme – with the best 
environmental benefits – would result in [0.782, 0.892] 
×107 tons CO2-eq (0.128 ×107 tons CO2-eq lower than 

that of the MCS scheme). Considering the tradeoffs 
between GHG-emission control and economic cost 
minimization, the ideal solution ([0.837, 0.946] ×107 
tons CO2-eq) is found in the MGU-MCL scheme. 
On the treatment technology side, the landfill facility 
would make the largest contribution to GHG emissions, 
accounting for [46.86, 49.80]%, [51.69, 54.48]%, and 
[56.47, 58.90]% in the MGS, MGU-MCL, and MCS, 
respectively. 
The contribution from incineration facilities can 

hardly be overlooked. Their GWP share would be [19.57, 
21.55]%, [21.57, 24.40]%, and [18.02, 19.64]% in the 
MGU-MCL, MGS, and MCS, respectively. Conversely, 
the GWP impacts of composting would be the lowest. 
Generally, the MGS provides an environmental-aggressive 
scheme for cutting GHG emissions to the greatest extent, 
whereas the GHG-emission from the MGU-MCL scheme 
would be less than that from the MCS scheme.

On the other hand, landfill facility is not only the 
main pathway for emitting CH4, but also a major source 
of CO2 emissions (another is incineration facility). While 
the contribution of composting and incineration facilities 

Fig. 6. Facility-expansion (upper) under different models (Unit: tons/day).
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to N2O is predominant. The allocation schemes generated 
from the three models visually reflect the variations of 
GHG emissions (Fig. 7). The CO2 and CH4 emissions 
from landfill facilities based on the MCS would exceed 
that based on the MGS and the MGU-MCL. In detail, the 
optimized CO2 and CH4 emissions under the MCS scheme 
would reach [17.09, 17.48] ×105 tons CO2-eq and [43.65, 
44.64] ×105 tons CO2-eq, with [35.06, 36.28]% and [16.80, 
18.90]% more than that under the MGS scheme and the 
MGU-MCL scheme, respectively. 

Unlike the allocation scheme obtained from the MCS, 
more waste flows would be sent to the composting and 
incineration facilities according to the MGS and the 
MGU-MCL schemes. As a result, the GHG-emission 
(primarily N2O) in terms of the MGS and the MGU-MCL 
would exceed that in terms of the MCS. For instance, the 
MGS only seeks eivironmental benefit so that composting 

facilities would handle approximately 38% of the waste 
flows, which significantly exceeds their preset diversion 
rate (i.e., 30%). Consequently, a high diversion rate 
correponds to increased waste that would be treated in 
the composting and incineration facilities, then to higher 
GHG emissions in the two process units, particularly N2O. 
The incineration facility is the second-largest source for 
the GHG-emission after landfill facility, primarily due to 
regulation from the management policy of Beijing.
(4) Economic cost analysis. Fig. 8 presents the comparison 

of economic cost among the three models, through 
which the effects of waste diversion on MSW 
management cost can be examined. Under the MGS 
conditions, the economic cost would be $[59.5, 
89.1] ×108 over the entire planning horizon, which is 
13.94% greater than that from the MCS. The economic 
cost from the MGU-MCL model would amount  

Fig. 7. GHG emissions from the different treatment facilities under the three models (Unit: CO2-eq).
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to $[57.3, 85.5] ×108, about 4% lower than that from 
the MGS scheme or 8% more than that from the MCS 
scheme. In the MGU-MCL decision, about 65% of the 
total system cost would come from incineration and 
composting facilities because of their processing more 
than 70% of the generated waste in the study area. 
Similarly, the transfer stations would contribute 24% 
of the total. By contrast, landfill facility would play an 
insignificant role in economic contribution, accounting 
for approximately 3.5%.

Waste-management Efficiency Analysis 
and Policy Analysis

The estimated diversion rate, GHG-emission, economic 
cost, and equipment utilization are selected as the indices 
for analyzing waste-management efficiency and policy, as 
shown in Table 6. Results show that a higher diversion rate 
is aligned to more GHG emissions reduction and economic 
cost, but irrational facility-expansion schemes would 
be performed, leading to lower equipment utilization. 
Additionally, the GHG emissions from the MCS scheme 
would increase to 88.00×103 tons CO2-eq /(ktMSW), 
which hardly satisfies the objective of the decision-
maker of the environmental sector. Actually, comparative 
analysis of the three models indicates that the MGU-MCL 
scheme reflects slightly increased management cost, yet 
a high level of equipment utilization and diversion rate. 
Generally, in environmental sector terms the scheme 
acquired from the MGS approach would be prioritized, 
whereas the scheme achieved through the MCS would be 
selected from the perspective of local authority. When the 
decision-makers demonstrate a moderate attitude toward 
environmental effects and economic cost, the scheme from 
the MGU-MCL approach would be the primary option.

Moreover, landfill facility plays an irreplaceable 
role in the MSW management system. It is the largest 
contributor to GWP impacts. Conversely, its cost is the 
lowest among the process units. Thus, landfilling gas 
utilization is suggested as the best way to control GHG 
emissions and economic cost. Similar conclusions were 
also drawn in the literature [17]. Particularly in Beijing, 
the proportion of landfilling (e.g., 25% suggested by the 
MGU-MCL) would be reduced, and the existing landfill 
facilities must make full utilization of their landfilling 
gas. Also, development or expansion composting and 
incineration facilities would be given much importance 
given their equipment utilization being improved.

Discussion and Conclusions

This study develops an MGU-MCL model with two 
objective functions, namely to minimize GHG emissions 
expressed as GWP impacts at the environmental sector 
level and to minimize MSW management costs at the local 
authority level. This is the first attempt to apply the MGU-
MCL model for dealing with control of GHG emissions, 
economic cost, and waste resource utilization in an actual 
case: the MSW management system in the city of Beijing. 
Moreover, implicit in the model allocation scheme is the 
fact that the MGU-MCL schemes reduce GHG emissions 
by 9% yet increase 4% of the total management cost as 
compared with the conventional MCS model. The MGU-
MCL schemes become the most favorable among the 
three models because of their modest diversion rate, high 
level of equipment utilization, and contribution to GHG 
emissions mitigation, while uncertainties over GWP 
impact value and diversion rate of MSW would have 
significant impacts on the bi-level decisions.Fig. 8. System cost under the three models (Unit: $).



1449Bi-Level Decision-Making Approach...

The MGU-MCL model could be improved in future 
studies. For instance, some types of GHGs (e.g., CO and 
SO2) were not considered due to low emission levels 
during the MSW disposal processes. Additionally, the 
interaction among the GHGs was neglected, which may 
slightly affect the optimized schemes. Therefore, future 
studies must be conducted to improve the current model 
and to accommodate the increased complexity in MSW 
management and GHG emissions control.
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Appendix

t: Index for transfer station, t = 1, 2… 6
l: Index for landfill, l = 1, 2… 13
c: Index for composting, c = 1, 2… 5
i: Index for incinerator, i = 1, 2…5
k: Index for planning period, k  = 1, 2, 3
j: Index for districts, j = 1, 2…18, j = 1 for Dongcheng, 

2 for Xicheng, 3 for Chongwen, 4 for Xuanwu, 5 
for Chaoyang, 6 for Fengtai, 7 for Shijingshan, 8 for 
Haidian, 9 for Mentouguo, 10 for Fangshan, 11 for 
Tongzhou, 12 for Shunyi, 13 for Changping, 14 for 
Daxing, 15 for Pinggu, 16 for Huairou, 17 for Miyun, 
18 for Yanqing

e: Index for transfer station expansion option, e = 1, 2, 3
m: Index for composting expansion option, m = 1, 2, 3
n: Index for incinerator expansion option, n = 1, 2, 3
XT±

t,k: Waste flow from urban districts to transfer station t 
in period k (ton/day)

XL±
t,l,k: Waste flow from transfer station t to landfill l 

during period k (ton/day)
XUL±

l,k: Waste flow from districts to landfill l during period 
k (ton/day)

XC±
t,c,k: Waste flow from transfer station t to composting c 

in period k (ton/day)
XUC±

c,k: Waste flow from districts to composting c during 
period k (ton/day)

XI±
t,i,k: Waste flow from transfer station t to incinerator i 
during period k (ton/day)

XUI±
i,k: Waste flow from districts to incinerator i during 

period k (ton/day)
XRC±

c,l,k: Residue MSW from composting c to landfill l 
during period k (ton/day)

XRI±
i,l,k: Residue MSW from incinerator i to landfill l 

during period k (ton/day)
Yt,e,k: Binary variable for transfer station t with option e 

during period k 
Uc,m,k: Binary variable for composting c with option m 

during period k 
Zi,n,k: Binary variable for incinerator i with option n during 

period k 
TGWP±: Total emissions of metric ton carbon equivalent 

(ton CO2-eq)
TCOST±: Net system cost ($)
Lk: Length of period k (day)
GWP±

tr,k: Unit GWP for transportation of per MSW during 
period k (kg CO2-eq /ton)

GWP±
t,k: Unit GWP for transfer station of per MSW in 

period k (kg CO2-eq /ton)
GWP±

l,k: Unit GWP for landfill of per MSW during period 
k (kg CO2-eq /ton)

GWP±
c,k: Unit GWP for composting of per MSW during 

period k (kg CO2-eq /ton)
GWP±

i,k: Unit GWP for incinerator of per MSW during 
period k (kg CO2-eq /ton)

TSTk: Environmental standard level during period k (kg 
CO2-eq /day)

CC±
k: Collection costs during period k ($/ton)

TR±
k: Transportation costs during period k ($/ton)

OT±
t,k: Operating costs of transfer station t during period 

k ($/ton)
OL±

l,k: Operating costs of landfill l during period k ($/ton)
OC±

c,k: Operating costs of composting facility c during 
period k ($/ton)

OI±
i,k: Operating costs of incinerator i during period k ($/

ton)
FTt,k: Residue rates of transfer station t during period k (%)
FCc,k: Residue rates of composting facility c during period 

k (%)
FIi,k: Residue rates of incinerator i during period k (%)
ξ: Biogas generation of per MSW (kWh/ton)
PCE±

c,k: Biogas generation cost ($/kWh)
GCE±

k: Costs of air control for biogas generation during 
period k ($/kWh)

ψ: Incineration power generation of per MSW (kWh /ton)

Table 6. MSW management efficiency of the three models.

Index Diversion rate 
(%)

GHG 
(103 ton CO2-eq/kt·MSW)

Economic cost 
(103 $/kt·MSW)

Equipment utilization (%)
LF CP IN Average

MGS 78 77.08 68.30 45 88 69 67

MCS 71 88.00 63.00 62 75 76 71

MGU-MCL 75 82.10 65.76 55 87 70 71

Note: LF = landfill; CP = composting facility; IN = incineration facility.
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PIE±
i,k: Incineration power generation cost ($/kWh)

GIE±
k: Cost for air control in incineration during period k 

($/kWh)
FCC±

m,k: Cost for composting facility expansion with 
option m during period k ($)

FCI±
n,k: Cost for incinerator expansion with option n 

during period k ($)
FCT±

e,k: Cost for transfer station expansion with option e 
during period k ($)

RT±
t,k: Recycle revenue of transfer station t during period 

k ($/ton)
RC±

c,k: Recycle revenue of composting facility c during 
period k ($/ton)

RCE±
k: Revenue from biogas generation during period k 

($/kWh)
PCF±

k: Rertilizer revenue from composting facility during 
period k ($/ton)

Ω: Fertilizer production efficiency (%)
RI±

i,k: Recycle revenue of incinerator i during period k ($/
ton)

GRI±
k: Government subsidies to incineration facility 

during period k ($/ton)
RIE±

k: Revenue from incineration power generation during 
period k ($/kWh)

TLC±
l: Capacity of landfill l at the start of planning period 

(ton/day)
SLC±

l: Minimum processing capacity of landfill l (ton/day)
TCt: Capacity of transfer station t at the start of planning 

period (ton/day)
ΔTCe,k: Capacity expansion with option e for transfer 

station t in period k (ton/day)
SCt: Minimum processing capacity of transfer station t 

(ton/day)
TCCc: Capacity of composting facility c at the start of 

planning period (ton/day)
SCCc: Minimum processing capacity of composting 

facility c (ton/day)
ΔTCCc,m,k: Capacity expansion with option m for 

composting c in period k (ton/day)
TICi: Capacity of incinerator i at the start of planning 

period (ton/day)
ΔTICi,n,k: Capacity expansion with option n for incinerator 

i in period k (ton/day)
SICi: Minimum processing capacity of incinerator i (ton/

day)
W±

j,k: Amount of waste generated in district j during period 
k (ton/day)

TSW±
k: Total amount of waste generated in Beijing during 

period k (ton/day)
GTk: Diversion rate of waste flow to transfer station during 

period k (%)
GIk: Diversion rate of waste flow to incinerator during 

period k (%)
GCk: Diversion rate of waste flow to composting facility 

during period k (%)
GLk: Diversion rate of waste flow to landfill during period 

k (%)
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